

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

FIRST SEMESTER EXAMINATION, 2020/2021 ACADEMIC SESSION

COURSE TITLE: ELECTROMAGNETIC FIELDS

COURSE CODE: EEE 313

EXAMINATION DATE: 23RD MARCH, 2021

COURSE LECTURER: DR R. Alli-Oke & Dr K. Temikotan

HOD's SIGNATURE

TIME ALLOWED: 3 HRS

INSTRUCTIONS:

1. ANSWER QUESTION 1 AND ANY OTHER FOUR QUESTIONS (TOTAL OF 5 QUESTIONS)

 SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.

3. YOU ARE <u>NOT</u> ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.

4. SEPARATION VECTOR ξ IS ALWAYS r-r' i.e. FIELD POINT — SOURCE POINT.

5. COULOMB'S LAW: $\vec{\mathbf{E}} = \frac{1}{4\pi\epsilon_0} \frac{q}{\xi^2} \hat{\xi}$ VACUUM PERMITIVITY $\epsilon_0: 8.854 \times 10^{-12} \ \mathrm{Fm^{-1}}$

6. COLOUMB'S CONSTANT $k_e=\frac{1}{4\pi\epsilon_0}=8.988\times 10^9~\mathrm{Nm^2C^{-2}}$

7. USE THE FOLLOWING COORDINATE SYSTEM THROUGHOUT THE EXAM

Include appropriate units in your answers. The speed of light, permittivity and permeability in free space are given by $c=3\times 10^8$ m/s, $\epsilon_0=8.854\times 10^{-12}$ Fm⁻¹ and $\mu_0=4\pi\times 10^{-7}$ N/A² respectively. All symbols should be taken as standard. The unit of \vec{B} is Nm⁻¹A⁻¹.

QUESTION #1

a) The figure below (Fig. 1) shows a thick spherical shell of charge of uniform volume charge density ρ . Plot $\vec{\bf E}$ due to the shell for distances r from the center of the shell ranging from 0cm to 30cm. Assume that $\rho = 1.0 \times 10^{-6} C/m^3$, a = 10cm, and b = 20cm [10 marks]

Figure 1: Thick Spherical Shell

b) With the aid of a well-labelled diagram, briefly explain Biot-Savarts law. Your answer should include mathematical expressions.

[10 marks]

QUESTION #2

a) The diagram in Figure (2a) shows a non-conducting rod with uniformly distributed charge +Q. The rod forms a half-circle of radius N and produces an electric field $\overline{E_{arc}}$ at its center of curvature P. If the arc of Figure (2a) is collapsed in a single point-charge +Q at a distance R from P (see Figure 2b), by what factor is the electric field E_{arc} multiplied? Hint: label the differential length ds, label the coordinates of ds in terms of θ , obtain the separation vector $\vec{\xi}$, and apply Coulomb's law while noting that $dQ = \lambda ds = \lambda N d\theta$. Compute the ratio $\frac{electric field at P in Fig 2b}{E_{arc} at P in Fig 2a}$

Figure 2: Configuration of Uniformly Distributed Charges

QUESTION #3

a) Space vehicles traveling through Earth's radiation belt can intercept a significant number of electrons. The resulting charge buildup can damage electronic components and disrupt operations. Suppose a 2 m diameter-wide spherical metallic satellite accumulates 20 μ C in one orbital revolution. (i) Find the resulting surface charge density. (ii) Calculate the magnitude of the electric field just outside the surface of the satellite due to surface charge. [10 marks]

QUESTION #4

a) The charges below shows particles with charges $q_1 = +2Q$, $q_2 = +2Q$, and $q_3 = -4Q$ each at a distance d from the origin. What is the net electric field at the origin? Hint: Separation vectors approach is a must. Note that the origin is already specified.

[4 marks]

Figure 3: Configuration of Discrete Charges

b) Consider a rod of length l has a uniform charge density of λ and a total charge Q. Compute the electric field at a point P along the axis of the rod, a distance d from the left end. [6 marks]

OUESTION #5

- a) A sphere of radius R has a total charge Q with a uniform (volume) charge density ρ . Find the electric field everywhere inside the sphere. (Hint: There is only one region, $r \leq R$. Use direct proportion to obtain the enclosed charge). [4 marks]
- b) Show that the field $\vec{E} = (x + 5) a_z$ is electrostatic.

[6 marks]

QUESTION #6

a) A rectangular loop carrying 10 A of current is placed on z = 0 plane as shown in Figure 4. Evaluate H at (2, 2, 0). [4 marks]

Figure 4

b) A sphere of radius R has a (volume) charge density proportional to the distance from the origin, ρ = kr, for some constant k.
 Find the electric field everywhere inside and outside the sphere. (Hint: There are two regions, r < R and r ≥ R. The charge density is not uniform; you must integrate to get the enclosed charge).
 [6 marks]

OUESTION #7

- a) A non-uniform electric field is given by the expression $\vec{E} = y i + 2z j + 4z k$. With the aid of a diagram, determine the electric flux through a rectangular surface in the zy plane extending from z = 0 to z = 1 and from y = 0 to z = 4. [4 marks]
- b) The potential field $V = 2x^2yz y^3z$ exists in a dielectric medium having $\varepsilon = 2\varepsilon_0$ [6 marks]
 - i) Does V satisfy Laplace's equation?
 - ii) Calculate the total charge within the unit cube 0 < x, y, z < 1 m.